Extensions 1→N→G→Q→1 with N=C22 and Q=C2×F5

Direct product G=N×Q with N=C22 and Q=C2×F5
dρLabelID
C23×F540C2^3xF5160,236

Semidirect products G=N:Q with N=C22 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C221(C2×F5) = D4×F5φ: C2×F5/F5C2 ⊆ Aut C22208+C2^2:1(C2xF5)160,207
C222(C2×F5) = C2×C22⋊F5φ: C2×F5/D10C2 ⊆ Aut C2240C2^2:2(C2xF5)160,212

Non-split extensions G=N.Q with N=C22 and Q=C2×F5
extensionφ:Q→Aut NdρLabelID
C22.1(C2×F5) = D4.F5φ: C2×F5/F5C2 ⊆ Aut C22808-C2^2.1(C2xF5)160,206
C22.2(C2×F5) = D10.D4φ: C2×F5/D10C2 ⊆ Aut C22404+C2^2.2(C2xF5)160,74
C22.3(C2×F5) = Dic5.D4φ: C2×F5/D10C2 ⊆ Aut C22804-C2^2.3(C2xF5)160,80
C22.4(C2×F5) = C23⋊F5φ: C2×F5/D10C2 ⊆ Aut C22404C2^2.4(C2xF5)160,86
C22.5(C2×F5) = C23.F5φ: C2×F5/D10C2 ⊆ Aut C22404C2^2.5(C2xF5)160,88
C22.6(C2×F5) = D5⋊M4(2)φ: C2×F5/D10C2 ⊆ Aut C22404C2^2.6(C2xF5)160,202
C22.7(C2×F5) = D10.C23φ: C2×F5/D10C2 ⊆ Aut C22404C2^2.7(C2xF5)160,205
C22.8(C2×F5) = C4×C5⋊C8central extension (φ=1)160C2^2.8(C2xF5)160,75
C22.9(C2×F5) = C20⋊C8central extension (φ=1)160C2^2.9(C2xF5)160,76
C22.10(C2×F5) = C10.C42central extension (φ=1)160C2^2.10(C2xF5)160,77
C22.11(C2×F5) = D10⋊C8central extension (φ=1)80C2^2.11(C2xF5)160,78
C22.12(C2×F5) = Dic5⋊C8central extension (φ=1)160C2^2.12(C2xF5)160,79
C22.13(C2×F5) = D10.3Q8central extension (φ=1)40C2^2.13(C2xF5)160,81
C22.14(C2×F5) = C23.2F5central extension (φ=1)80C2^2.14(C2xF5)160,87
C22.15(C2×F5) = C2×D5⋊C8central extension (φ=1)80C2^2.15(C2xF5)160,200
C22.16(C2×F5) = C2×C4.F5central extension (φ=1)80C2^2.16(C2xF5)160,201
C22.17(C2×F5) = C2×C4×F5central extension (φ=1)40C2^2.17(C2xF5)160,203
C22.18(C2×F5) = C2×C4⋊F5central extension (φ=1)40C2^2.18(C2xF5)160,204
C22.19(C2×F5) = C22×C5⋊C8central extension (φ=1)160C2^2.19(C2xF5)160,210
C22.20(C2×F5) = C2×C22.F5central extension (φ=1)80C2^2.20(C2xF5)160,211

׿
×
𝔽